
	Products
	Pricing
	Documentation
	Support

							Login
					

							Cart
					

Your cart is empty. See pricing.
					My order
				

	

Total:

							Order
					

	Home
	Products
	Pricing
	Documentation
	Support

							Login
					

LinkedIn

Twitter

PDFKit.NET 5.0
Create and manipulate PDF documents. Split, append, stamp, encrypt, extract, fill and more.

TallPDF.NET 5.0
Generate PDF on the fly, from scratch, use code, XML/XSL or a combination.

PDFRasterizer.NET 4.0
Render PDF pages pixel-perfect on Windows, MacOS and Linux

 Find the right product

							All code samples
					

PDFKit.NET 5.0Guide
API reference
Code samples
Changelog

TallPDF.NET 5.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0 is now available. Supports .NET Core. Renders pixel-perfectly.

							Try it now
					

PDFRasterizer.NET 3.0

							Download trial
					

	
							TallPDF.NET 6.0

							
															beta
	
							PDFRasterizer.NET 4.0

							
							
															newest
	
							TallPDF.NET 5.0

							
							
															newest
	
							TallPDF.NET 4.0

															old
	
							PDFKit.NET 5.0

							
							
															newest
	
							PDFKit.NET 4.0

															old
	
							PDFRasterizer.NET 3.0

															old

	Guide
	API reference
	Code samples
	Changelog

HomeProductsPDFRasterizer.NET 3.0Code samples

	How to use a system font for rendering text
	
	PDF to grayscale TIFF
	
	Display PDF in a WPF app and stay responsive - the code
	
	C# Print PDF documents from a WPF application
	
	Change colors of black-and-white TIFF after converting from PDF
	
	Convert PDF to PNG using WPF
	
	Convert PDF to an image using a dither matrix
	
	Font mapping
	
	Convert PDF with layers to image
	
	C# Print PDF Document
	
	Render PDF with ResolveFont event handler
	
	Render PDF to EMF
	
	Convert PDF to XPS
	
	Convert PDF to JPG in C#
	
	Convert PDF to multipage TIFF in C# .NET
	
	Convert multiple PDF pages to bitmap
	
	Render a PDF to bitmap
	
	Use multiple licenses
	

How to use a system font for rendering text
This code sample shows how you can render text using a system font.
By default, PDFRasterizer.NET and PDFControls.NET render text as curves (paths) that are filled with a particular color. Any font information that is present in the PDF document gets interpreted and transformed into curves, and then rendered.
We do this, because this results in the most accurate representation of the text. Windows does not support all font types that are possible in a PDF document. So we cannot always tell .NET to render the fonts for us.
There are however cases that it makes sense to have text rendered as system fonts. For example to speed up print jobs as explained in the article named how to speed up print jobs. This code sample will show you how to do this exactly.
Below we will just talk about PDFRasterizer.NET, but it applies to PDFControls.NET as well.
The UseOSFont sample
The following snippets comes from the UseOSFont sample that is included in the PDFRasterizer.NET distribution. This sample shows how you can use the ResolveFont event to map PDF fonts to system fonts. The first step is to assign a handler for this event before rendering.
CopyrenderSettings1 = new RenderSettings();
renderSettings1.TextSettings.ResolveFont += new ResolveFontEventHandler(TextSettings1_ResolveFont);renderSettings1 = new RenderSettings();
renderSettings1.TextSettings.ResolveFont += new ResolveFontEventHandler(TextSettings1_ResolveFont);

The handler itself will be called whenever a PDF font needs to be rendered. It will pass information about this font in the event arguments. In addition it will pass information about the way that it is going to be rendered (in the FontRenderMode), and where the font definition has been obtained (in the FontLocation). The handler can inspect this information and change it in order to request a different way of rendering.
The code below will first check if the font information already originates from a system font. If not, it will set the RenderMode to RenderAsFont and set the SystemFontName. This will cause the rendering system to look up this font and avoid rendering it as curves.
Copyvoid TextSettings1_ResolveFont(TextRenderSettings sender, ResolveFontEventArgs args)
{
 if (args.FontLocation != FontLocation.System)
 {
 args.FontRenderMode = FontRenderMode.RenderAsFont;

 if (args.PdfFontName.EndsWith("Bold"))
 {
 args.Bold = true;
 }

 args.SystemFontName = "Arial";
 }
}void TextSettings1_ResolveFont(TextRenderSettings sender, ResolveFontEventArgs args)
{
 if (args.FontLocation != FontLocation.System)
 {
 args.FontRenderMode = FontRenderMode.RenderAsFont;

 if (args.PdfFontName.EndsWith("Bold"))
 {
 args.Bold = true;
 }

 args.SystemFontName = "Arial";
 }
}

Please note that certain combinations are not supported currently. For system fonts the FontRenderMode cannot be set to RenderAsCurves. If an inappropriate combination is used, the ResolveFont event will be raised again, allowing the application to correct the requested render mode. For details please see the reference guide that is included in PDFRasterizer.NET.

Download PDFRasterizer.NET 3.0

							We will send you a download link
						

	

	

	Your name*

	Your e-mail*

	Newsletter	Subscribe to newsletter

	

	

	

	

	Name
This field is for validation purposes and should be left unchanged.

Download

							Why do we ask your email address?
						
We send tips that speed up your evaluation
We let you know about bug fixes
You can always unsubscribe with one click
We never share your address with a 3rd party

							Thank you for your download

We have sent an email with a download link.

Our products
PDFKit.NET 5.0
Create and manipulate PDF documents
TallPDF.NET 5.0
Generate PDF on the fly
PDFRasterizer.NET 4.0
Render PDF pages cross-platform

Support resources
	Code samples
	Submit issue
	Contact
	Licensing Model

Legal
	EULA
	Privacy

LinkedIn

Twitter

				© 2001-2024 TallComponents BV. All rights reserved.
							

