
	Products
	Pricing
	Documentation
	Support

							Login
					

							Cart
					

Your cart is empty. See pricing.
					My order
				

	

Total:

							Order
					

	Home
	Products
	Pricing
	Documentation
	Support

							Login
					

LinkedIn

Twitter

PDFKit.NET 5.0
Create and manipulate PDF documents. Split, append, stamp, encrypt, extract, fill and more.

TallPDF.NET 5.0
Generate PDF on the fly, from scratch, use code, XML/XSL or a combination.

PDFRasterizer.NET 4.0
Render PDF pages pixel-perfect on Windows, MacOS and Linux

 Find the right product

							All code samples
					

PDFKit.NET 5.0Guide
API reference
Code samples
Changelog

TallPDF.NET 5.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0 is now available. Supports .NET Core. Renders pixel-perfectly.

							Try it now
					

TallPDF.NET 6.0

							Download trial
					

	
							TallPDF.NET 6.0

							
															beta
	
							PDFRasterizer.NET 4.0

							
							
															newest
	
							TallPDF.NET 5.0

							
							
															newest
	
							TallPDF.NET 4.0

															old
	
							PDFKit.NET 5.0

							
							
															newest
	
							PDFKit.NET 4.0

															old
	
							PDFRasterizer.NET 3.0

															old

	Guide
	API reference
	Code samples
	Changelog

Product is in Beta
This product is in the beta phase and therefore subject to change.

HomeProductsTallPDF.NET 6.0Guide

	Introduction
	Document
	Sections
	Paragraphs
	Text
	Tables
	Images
	Drawings and shapes
	Context fields
	Event-driven generation
	Extend TallPDF.NET
	Actions
	Convert XHTML to PDF

Convert XHTML to PDF
As of version 4.0 TallPDF.NET has extensive XHTML + CSS2 support. This is available through the XhtmlParagraph class. The XhtmParagraph class fully supports XHTML 1.0 Strict, XHTML 1.1 and CSS 2.1 including page breaks, forms and links.
XhtmlParagraph is a specialization of paragraph. Therefore, all members of paragraph are members of XhtmlParagraph as well. You can add it to a section, table cell, header or footer.
The following code snippets show how to use the XhtmlParagraph.
CopyDocument document = new Document();
Section section = document.Sections.Add();

// create an XhtmlParagraph with static content
XhtmlParagraph xhtml1 = new XhtmlParagraph();
xhtml1.Text = "<html><body><i>Hello world</i></body></html>";
section.Paragraphs.Add(xhtml1);

s// create an XhtmlParagraph from a URL
XhtmlParagraph xhtml2 = new XhtmlParagraph();
xhtml2.Path = @"http://www.yourserver.com/xhtml/path/file.htm";
section.Paragraphs.Add(xhtml2);

// convert to PDF and save
using (FileStream fs = new FileStream("out.pdf", FileMode.Create))
{
 document.Write(fs);
}
Document document = new Document();
Section section = document.Sections.Add();

// create an XhtmlParagraph with static content
XhtmlParagraph xhtml1 = new XhtmlParagraph();
xhtml1.Text = "<html><body><i>Hello world</i></body></html>";
section.Paragraphs.Add(xhtml1);

s// create an XhtmlParagraph from a URL
XhtmlParagraph xhtml2 = new XhtmlParagraph();
xhtml2.Path = @"http://www.yourserver.com/xhtml/path/file.htm";
section.Paragraphs.Add(xhtml2);

// convert to PDF and save
using (FileStream fs = new FileStream("out.pdf", FileMode.Create))
{
 document.Write(fs);
}

Code sample: Import XHTML in C#
Disclaimer
XhtmlPargraph tries its best to convert any XHTML to PDF. The output may not be identical to that of a major browser. It is recommended to use XhtmlParagraph in a controlled environment where the features used by your XHTML documents can be tested before being used.
XHTML vs HTML
The XhtmlParagraph expects XHTML as opposed to HTML. While XHTML is well-formed XML, HTML generally is not. Common differences are:
	All elements must be closed. Use either ... or use
	Opening and closing tags must be correctly balanced: bold<i>bolditalicitalic</i> should be: bold<i> bolditalic</i><i>italic</i>
	All attribute values have to be enclosed in quotes: <table border=3 width=300> should be <table border="3" width="300">

Conversion Settings
You can specify conversion settings that control different aspects of the XHTML conversion. These settings are specified in the XhtmlParagraph.Settings propery. The following code shows how to specify conversion settings using the ConversionSettings class:
CopyXhtmlParagraph xhtmlParagraph = new XhtmlParagraph();
xhtmlParagraph.Settings = new ConversionSettings();
XhtmlParagraph xhtmlParagraph = new XhtmlParagraph();
xhtmlParagraph.Settings = new ConversionSettings();

You can use the same ConversionSettings instance and assign it to multiple XhtmlParagraph instances. If you do not set the Settings property of an XhtmlParagraph, it will use default settings. The following paragraphs discuss the difference settings that are exposed by the ConversionSettings class.
Style Sheets
The CSS 2.1 specification states the following about the precedence of styles depending on their origin (in ascending order of precedence):

	
user agent declarations
	
user normal declarations
	
author normal declarations
	
author important declarations
	
user important declarations

User Agent DeclarationsThe user agent declaration are incorporated in the converter itself. These are described in Appendix D, “Default style sheet for HTML 4” of the CSS 2.1 Specification. E.g. one such style definition is:
Copystrong { font-weight: bolder }
strong { font-weight: bolder }

This defines the default meaning of the strong element.
Author Declarations
The author normal declarations and author important declarations are embedded or referenced in the XHTML document itself. Because the precedence of these declarations are higher than the user agent declarations, you can override the semantics of the strong element as follows:
Copy<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<style type="text/css" id="internalStyle">
 strong {
 color: green;
 font-family: monospace;
 font-weight: bold;
 }
</style>
</head>
<body>
<p>
 This is text that uses our
 internal stylesheet.
</p>
</body>
</html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<style type="text/css" id="internalStyle">
 strong {
 color: green;
 font-family: monospace;
 font-weight: bold;
 }
</style>
</head>
<body>
<p>
 This is text that uses our
 internal stylesheet.
</p>
</body>
</html>

A declaration is said to be important if the delimiter token "!" and keyword "important" follow the declaration as follows:
Copy<style type="text/css" id="Style1">
 p { color:green!important }
</style>
<p style="color:red">This text will be green.</p>
<style type="text/css" id="Style1">
 p { color:green!important }
</style>
<p style="color:red">This text will be green.</p>

Otherwise, the declaration is normal.
User Declarations
The third origin of style sheets is user. TallPdf.NET allows you to specify user style sheets through the ConversionSettings.StyleSheets property. The following code shows how to add a user style sheet:
CopyXhtmlParagraph xhtmlParagraph = new XhtmlParagraph();
xhtmlParagraph.Settings = new ConversionSettings();

CssStyleSheet styleSheet = new CssStyleSheet();
styleSheet.Text = "strong { color:red!important }";
xhtmlParagraph.Settings.StyleSheets.Add(styleSheet);
XhtmlParagraph xhtmlParagraph = new XhtmlParagraph();
xhtmlParagraph.Settings = new ConversionSettings();

CssStyleSheet styleSheet = new CssStyleSheet();
styleSheet.Text = "strong { color:red!important }";
xhtmlParagraph.Settings.StyleSheets.Add(styleSheet);

Just like the author declarations, user declarations can be normal or important. This is determined by the use of the !important syntax. Note that the code sample above is a user important declaration and has the highest precedence of all declarations.
UseDtd
If you set UseDtd to false, then the DTD that is referenced by the XHTML document will be ignored. The default value is true. If you set this property to false, then all XHTML 1.1 entities will be resolved by TallPdf.NET itself. Any entities in the XHTML document that are not part of the XHTML 1.1 standard will result in an exception. So you should only set UseDtd to false if you are absolutely certain that all used entities are covered by the XHTML 1.1 standard. Setting UseDtd to false will increase the speed of the converter.
FontPath
By default, the converter will search the system fonts folder for fonts that are referenced in the XHTML document. When running in a context such as ASP.NET it might not be allowed to access the Windows Fonts folder due to security restrictions. In that case you can set the FontPath-property to point to an accessible folder containing True-type fonts.
Property ConversionSettings.FontPath allows you to control this. If you set this property, then the converter will first look inside ConversionSettings.FontPath, next it will look inside the system fonts folder. The default value of FontPath is null.
As opposed to the rest of TallPDF.NET, fonts have to be specified in the XhtmlParagraph using the font family name.
BasePath
During conversion, the base path will be searched for loadable objects such as images and style sheets. This base path will be determined once before the conversion starts and then used throughout the conversion. It is determined as follows:

	
If property ConversionSettings.BasePath has been set, then this path is used as the base path.
	
If the above property is not set, then property Document.Path or Area.Path (depending on the context) will be used as the base path. (If you use a FileStream as the source of the XHTML document, then we will use the underlying path as the base path.)
	
If the above property is not set (because you use a stream or verbatim text), then the current folder of the application will be used as the base path.

PDF Settings
Three properties of the ConversionSettings class control the PDF output. These are EnableForms, EnableLinks and EnableTooltips. All these properties default to true.
EnableForms converts HTML forms and fields into PDF fields.
EnableLinks converts HTML links (A element with an href attribute) into PDF links.
EnableTooltips converts HTML tooltips into PDF tooltips.
Credentials
Sometimes, a password is required to access a URL. You can specify such a password using the Credentials property as follows:
CopyXhtmlParagraph xhtmlParagraph = new XhtmlParagraph();
xhtmlParagraph.Settings = new ConversionSettings();

NetworkCredential credential = new NetworkCredential("jim","1234");
xhtmlParagraph.Settings.Credentials = credential;
XhtmlParagraph xhtmlParagraph = new XhtmlParagraph();
xhtmlParagraph.Settings = new ConversionSettings();

NetworkCredential credential = new NetworkCredential("jim","1234");
xhtmlParagraph.Settings.Credentials = credential;

ContentFitBehavior
The ContentFitBehavior property lets you specify how the HTML content scales to the PDF page. These are the different values:
DoNotScale: The HTML will not be scaled. 96 pixels correspond to 72 points (96 DPI). Note that the content may run over the right edge of the page.
SpecifyWidth: The property ConversionSettings.FixedWidth specifies the number of pixels that the width of the XhtmlParagraph corresponds with.
ScaleToWidth: The HTML content is scaled to fit the width of the section.
ScaleToSinglePage: The HTML content is scaled to fit both the width and the height of the page. The XhtmlParagraph will never be larger than a single page.
CustomResourceLoader
This property lets you specify a resource loader that has the first opportunity to load a resource such as an image as specified by the tag. You should create a class that implements the IResourceLoader interface and then assign an instance of this class to this property. Its method LoadResource will be called for each resource. Return null if you want the engine to handle the request.
The custom resource loader can be implemented for resources that require authentication.
Restrictions
	Only a single form per document is supported
	Javascript and Dynamic content (HTML generated through JavaScript, events etc.) are not supported
	Aural features are not supported
	Direction and Unicode-bidi are not supported

Download TallPDF.NET 6.0

							We will send you a download link
						

	

	

	Your name*

	Your e-mail*

	Newsletter	Subscribe to newsletter

	

	

	

	

	Email
This field is for validation purposes and should be left unchanged.

Download

							Why do we ask your email address?
						
We send tips that speed up your evaluation
We let you know about bug fixes
You can always unsubscribe with one click
We never share your address with a 3rd party

							Thank you for your download

We have sent an email with a download link.

Our products
PDFKit.NET 5.0
Create and manipulate PDF documents
TallPDF.NET 5.0
Generate PDF on the fly
PDFRasterizer.NET 4.0
Render PDF pages cross-platform

Support resources
	Code samples
	Submit issue
	Contact
	Licensing Model

Legal
	EULA
	Privacy

LinkedIn

Twitter

				© 2001-2024 TallComponents BV. All rights reserved.
							

