
	Products
	Pricing
	Documentation
	Support

							Login
					

							Cart
					

Your cart is empty. See pricing.
					My order
				

	

Total:

							Order
					

	Home
	Products
	Pricing
	Documentation
	Support

							Login
					

LinkedIn

Twitter

PDFKit.NET 5.0
Create and manipulate PDF documents. Split, append, stamp, encrypt, extract, fill and more.

TallPDF.NET 5.0
Generate PDF on the fly, from scratch, use code, XML/XSL or a combination.

PDFRasterizer.NET 4.0
Render PDF pages pixel-perfect on Windows, MacOS and Linux

 Find the right product

							All code samples
					

PDFKit.NET 5.0Guide
API reference
Code samples
Changelog

TallPDF.NET 5.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0 is now available. Supports .NET Core. Renders pixel-perfectly.

							Try it now
					

TallPDF.NET 6.0

							Download trial
					

	
							TallPDF.NET 6.0

							
															beta
	
							PDFRasterizer.NET 4.0

							
							
															newest
	
							TallPDF.NET 5.0

							
							
															newest
	
							TallPDF.NET 4.0

															old
	
							PDFKit.NET 5.0

							
							
															newest
	
							PDFKit.NET 4.0

															old
	
							PDFRasterizer.NET 3.0

															old

	Guide
	API reference
	Code samples
	Changelog

Product is in Beta
This product is in the beta phase and therefore subject to change.

HomeProductsTallPDF.NET 6.0Guide

	Introduction
	Document
	Sections
	Paragraphs
	Text
	Tables
	Images
	Drawings and shapes
	Context fields
	Event-driven generation
	Extend TallPDF.NET
	Actions
	Convert XHTML to PDF

Document
The Document class is the top-level class of the TallPDF.NET object model.
Create and Save
A typical PDF generation scenario consists of the following basis steps: 1. instantiate a Document; 2. add content and configure document settings; 3. save the document to any stream (typically disk, memory or HTTP response). This is shown in the following code snippets:
Copy// create document
Document doc = new Document();

// CODE OMITTED – CONTENT IS ADDED HERE

// save to disk
using (FileStream file = new FileStream(
 "out.pdf", FileMode.Create, FileAccess.Write))
{
 document.Write(file);
}
// create document
Document doc = new Document();

// CODE OMITTED – CONTENT IS ADDED HERE

// save to disk
using (FileStream file = new FileStream(
 "out.pdf", FileMode.Create, FileAccess.Write))
{
 document.Write(file);
}

Code sample: Create a new document, add content (omitted) and save it to disk in C#
Copy' create a document
Dim doc As New Document

' CODE OMITTED – CONTENT IS ADDED HERE

' save to disk
Using file As FileStream = New FileStream(_
 "out.pdf", FileMode.Create, FileAccess.Write)
 doc.Write(file)
End Using
' create a document
Dim doc As New Document

' CODE OMITTED – CONTENT IS ADDED HERE

' save to disk
Using file As FileStream = New FileStream(_
 "out.pdf", FileMode.Create, FileAccess.Write)
 doc.Write(file)
End Using

Code sample: Create a new document, add content (omitted) and save it to disk in VB.NET
Write Overloads
Document.Write has a number of overloads. Depending on what overload you use, the PDF document is generated in either pull or push mode. This is explained in more detail in Event-Driven Generation.
DocumentInfo
Property DocumentInfo lets you set document level information such as the author and title. This is shown in the next code:
CopyDocument doc;

doc.DocumentInfo.Author = "Chris Sharp";
doc.DocumentInfo.Title = "TallPDF.NET 4.0 Developer Guide";
Document doc;

doc.DocumentInfo.Author = "Chris Sharp";
doc.DocumentInfo.Title = "TallPDF.NET 4.0 Developer Guide";

Code sample: Set document info in C#
CopyDim doc As New Document

doc.DocumentInfo.Author = "Chris Sharp"
doc.DocumentInfo.Title = "TallPDF.NET 4.0 Developer Guide"
Dim doc As New Document

doc.DocumentInfo.Author = "Chris Sharp"
doc.DocumentInfo.Title = "TallPDF.NET 4.0 Developer Guide"

Code sample: Set document info in VB.NET
Security
The Security property lets you assign passwords and limit user privileges. The following code creates a document that requires a password to open and cannot be printed:
CopyDocument doc = new Document();

PasswordSecurity sec = new PasswordSecurity();
sec.Print = false;
sec.OwnerPassword = "gjh456j45";
sec.UserPassword = "egryt646g";
doc.Security = sec;
Document doc = new Document();

PasswordSecurity sec = new PasswordSecurity();
sec.Print = false;
sec.OwnerPassword = "gjh456j45";
sec.UserPassword = "egryt646g";
doc.Security = sec;

Code sample: Set security in C#
CopyDim doc As New Document

Dim sec As New PasswordSecurity()
sec.Print = False
sec.OwnerPassword = "gjh456j45"
sec.UserPassword = "egryt646g"
doc.Security = sec
Dim doc As New Document

Dim sec As New PasswordSecurity()
sec.Print = False
sec.OwnerPassword = "gjh456j45"
sec.UserPassword = "egryt646g"
doc.Security = sec

Code sample: Set security in VB.NET
A typical scenario is to set the user password to the empty string and the owner password to a non-empty string. This will not prompt the user for a password when she opens the document, but a password is required to change security settings.
A common question is how to generate a PDF document that cannot be saved. Unfortunately. The PDF format does not foresee in this feature.
By default the Security property is null (or Nothing) meaning that the document has no security settings.
ViewerPreferences
The ViewerPreferences property allows you to control the way that a PDF reader application displays the PDF initially. E.g. you can set the initial zoom or hide toolbars or set the reader to fullscreen mode. Here are some typical code samples:
CopyDocument doc = new Document();

ViewerPreferences vp = new ViewerPreferences();
vp.PageLayout = PageLayout.TwoColumnLeft;
doc.ViewerPreferences = vp;
Document doc = new Document();

ViewerPreferences vp = new ViewerPreferences();
vp.PageLayout = PageLayout.TwoColumnLeft;
doc.ViewerPreferences = vp;

Code sample: Setting viewer preferences in C#
CopyDim doc As New Document

Dim vp As New ViewerPreferences
' display pages in 2 columns - odd page left
vp.PageLayout = PageLayout.TwoColumnLeft
doc.ViewerPreferences = vp
Dim doc As New Document

Dim vp As New ViewerPreferences
' display pages in 2 columns - odd page left
vp.PageLayout = PageLayout.TwoColumnLeft
doc.ViewerPreferences = vp

Code sample: Setting viewer preferences in VB.NET
Actions
PDF allows you to associate actions with events. Chapter Actions discusses this topic in more detail . For now it suffices to say that the following properties allow you to associate actions with document-level events:

	
AfterPrintAction: This action will be executed by the PDF reader application after the PDF document has been printed.
	
AfterSaveAction: This action will be executed by the PDF reader application after the PDF document has been saved.
	
BeforeCloseAction: This action will be executed by the PDF reader application just before the PDF document is closed.
	
BeforePrintAction: This action will be executed by the PDF reader application just before the PDF document is printed.
	
BeforeSaveAction: This action will be executed by the PDF reader application just before the PDF document is saved.
	
OpenActions: This sequence of actions will be executed by the PDF reader during opening the PDF document.

Notethat these actions are not executed by TallPDF.NET. They are only associated with events and the actions are executed by the PDF reader application when the corresponding event occurs.The following code sample generates a PDF document so that a text field is filled with the current date just before it is printed. This way, you can always see on the print out when it was printed. How to add fields to a PDF document is discussed in Section Field Shapes in Chapter Drawings and Shapes.
CopyDocument document = new Document();

JavaScriptAction action = new JavaScriptAction(
 string.Format(
 "this.getField('printed').value = 'Printed: {0}'", DateTime.Now));
document.BeforePrintAction = action;

Section section = document.Sections.Add();

Drawing drawing = new Drawing(200, 100);
section.Paragraphs.Add(drawing);

TextFieldShape textField = new TextFieldShape(10, 50, 150, 30, "printed");
drawing.Shapes.Add(textField);

using (FileStream file = new FileStream(
 @"..\..\out.pdf", FileMode.Create, FileAccess.Write))
{
 document.Write(file);
}
Document document = new Document();

JavaScriptAction action = new JavaScriptAction(
 string.Format(
 "this.getField('printed').value = 'Printed: {0}'", DateTime.Now));
document.BeforePrintAction = action;

Section section = document.Sections.Add();

Drawing drawing = new Drawing(200, 100);
section.Paragraphs.Add(drawing);

TextFieldShape textField = new TextFieldShape(10, 50, 150, 30, "printed");
drawing.Shapes.Add(textField);

using (FileStream file = new FileStream(
 @"..\..\out.pdf", FileMode.Create, FileAccess.Write))
{
 document.Write(file);
}

Code sample: Add a BeforePrintAction to a document in C#
JavaScripts
The property JavaScripts lets you declare document level JavaScript. This typically contains common functions and constants that can be reused from other JavaScript actions. See JavaScript actions for more a more detailed discussion. The following code sample shows how to declare a JavaScript function at document level:
CopyJavaScript javaScript = new JavaScript("function foo() { return 10; }");
document.JavaScripts.Add(javaScript);
JavaScript javaScript = new JavaScript("function foo() { return 10; }");
document.JavaScripts.Add(javaScript);

Code sample: Declare a document-level JavaScript function in C#
CopyDim javaScript As New JavaScript("function foo() { return 10; }")
doc.JavaScripts.Add(javaScript)
Dim javaScript As New JavaScript("function foo() { return 10; }")
doc.JavaScripts.Add(javaScript)

Code sample: Declare a document-level JavaScript function in VB.NET
Sections
The property Sections lets you add Section objects to a document. A document has atleast one Section. A section contains the actual content as paragraph objects. Sections are discussed in more detaill in the next Chapter.

Download TallPDF.NET 6.0

							We will send you a download link
						

	

	

	Your name*

	Your e-mail*

	Newsletter	Subscribe to newsletter

	

	

	

	

	Comments
This field is for validation purposes and should be left unchanged.

Download

							Why do we ask your email address?
						
We send tips that speed up your evaluation
We let you know about bug fixes
You can always unsubscribe with one click
We never share your address with a 3rd party

							Thank you for your download

We have sent an email with a download link.

Our products
PDFKit.NET 5.0
Create and manipulate PDF documents
TallPDF.NET 5.0
Generate PDF on the fly
PDFRasterizer.NET 4.0
Render PDF pages cross-platform

Support resources
	Code samples
	Submit issue
	Contact
	Licensing Model

Legal
	EULA
	Privacy

LinkedIn

Twitter

				© 2001-2024 TallComponents BV. All rights reserved.
							

