
	Products
	Pricing
	Documentation
	Support

							Login
					

							Cart
					

Your cart is empty. See pricing.
					My order
				

	

Total:

							Order
					

	Home
	Products
	Pricing
	Documentation
	Support

							Login
					

LinkedIn

Twitter

PDFKit.NET 5.0
Create and manipulate PDF documents. Split, append, stamp, encrypt, extract, fill and more.

TallPDF.NET 5.0
Generate PDF on the fly, from scratch, use code, XML/XSL or a combination.

PDFRasterizer.NET 4.0
Render PDF pages pixel-perfect on Windows, MacOS and Linux

 Find the right product

							All code samples
					

PDFKit.NET 5.0Guide
API reference
Code samples
Changelog

TallPDF.NET 5.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0 is now available. Supports .NET Core. Renders pixel-perfectly.

							Try it now
					

TallPDF.NET 6.0

							Download trial
					

	
							TallPDF.NET 6.0

							
															beta
	
							PDFRasterizer.NET 4.0

							
							
															newest
	
							TallPDF.NET 5.0

							
							
															newest
	
							TallPDF.NET 4.0

															old
	
							PDFKit.NET 5.0

							
							
															newest
	
							PDFKit.NET 4.0

															old
	
							PDFRasterizer.NET 3.0

															old

	Guide
	API reference
	Code samples
	Changelog

Product is in Beta
This product is in the beta phase and therefore subject to change.

HomeProductsTallPDF.NET 6.0Guide

	Introduction
	Document
	Sections
	Paragraphs
	Text
	Tables
	Images
	Drawings and shapes
	Context fields
	Event-driven generation
	Extend TallPDF.NET
	Actions
	Convert XHTML to PDF

Images
The Image class is a specialization of paragraph. So all members of paragraph are members of image as well. Like any paragraph, an image can be added to a section, table cell, area, header and footer. Image is a very simple class. It allows you to add a raster images like a BMP or JPEG image to the document.
Size
You can set the Width and Height properties to control the size. Furthermore, if the KeepAspectRatio property is set (default), the height property is calculated from the width and vice versa. If you do not explicitly set the size, the maximum width is used. If an image does not fit in the available/given space, by default an exception is generated. Set the property FitPolicy to FitPolicy.Shrink to force resizing the image in this case.
If both the height and width are set, the image will be stretched to fit in the given area. The KeepAspectRatio flag is honored when resizing, and the image will be best-fit inside the specified area.
Image Source
An Image object can be constructed from a file path, a URL, a System.IO.Stream and a System.Drawing.Bitmap.
Path
You set the path of the image either through the constructor or through the 'Path' property. The path can either be a file on disk or a URL. If the path points to a file on disk, it can be either virtual (ASP.NET), absolute or relative.
The following code samples demonstrate different scenarios.
CopyImage image = new Image("tc-logo.gif");
Image image = new Image("tc-logo.gif");

Code sample: Construct an image from a relative file path (C#)
CopyImage image = new Image(@"c:\images\tc-logo.gif");
Image image = new Image(@"c:\images\tc-logo.gif");

Code sample: Construct an image from an absolute file path (C#)
CopyImage image = new Image("http://www.tallcomponents.com/img/tc-logo.gif");
Image image = new Image("http://www.tallcomponents.com/img/tc-logo.gif");

Code sample: Construct an image from a URL (C#)
System.Drawing.Bitmap
Sometimes you want to use a bitmap that is created in memory using the GDI+ image classes. In this case you can construct an Image object from a System.Drawing.Bitmap object.
Depending on what constructor overload is used, it is the responsibility of either the caller or callee to dispose the bitmap object. If the caller disposes, then the bitmap should not be disposed before Document.Write returns.
The following code samples demonstrate different scenarios.
Copyusing (Bitmap bitmap = new Bitmap("tc-logo.gif"))
{
 Image image = new Image(bitmap);
 section.Paragraphs.Add(image);

 using (FileStream file = new FileStream("out.pdf", FileMode.Create))
 {
 document.Write(file);
 }
}
using (Bitmap bitmap = new Bitmap("tc-logo.gif"))
{
 Image image = new Image(bitmap);
 section.Paragraphs.Add(image);

 using (FileStream file = new FileStream("out.pdf", FileMode.Create))
 {
 document.Write(file);
 }
}

Code sample: Construct an image from a Bitmap – caller disposes (C#)
CopySystem.Drawing.Bitmap bitmap = new System.Drawing.Bitmap("tc-logo.gif");
Image image = new Image(bitmap, true);
section.Paragraphs.Add(image);

using (FileStream file = new FileStream("out.pdf", FileMode.Create))
{
 document.Write(file);
}
System.Drawing.Bitmap bitmap = new System.Drawing.Bitmap("tc-logo.gif");
Image image = new Image(bitmap, true);
section.Paragraphs.Add(image);

using (FileStream file = new FileStream("out.pdf", FileMode.Create))
{
 document.Write(file);
}

Code sample: Construct an image from a Bitmap – callee disposes (C#)
System.IO.Stream
In some cases you want to construct the image from a System.IO.Stream instance. A typical scenario is when the image is stored as a binary blob in a database. In this case you get the data from the database, wrap this in a MemoryStream and construct the Image from this stream.
Depending on what constructor overload is used, it is the responsibility of either the caller or callee to close the stream object. If the caller is responsible then the stream should not be closed before Document.Write returns.
The following code sample demonstrates a typical scenarios.
CopyDocument document = new Document();
Section section = document.Sections.Add();

using (SqlConnection connection = new SqlConnection("..."))
{
 connection.Open();

 string query = "SELECT data FROM images WHERE id=3";
 SqlCommand cmd = new SqlCommand(query, connection);
 byte[] blob = (byte[]) cmd.ExecuteScalar();

 Image image = new Image(new MemoryStream(blob));
 section.Paragraphs.Add(image);
}

using (FileStream file = new FileStream("out.pdf", FileMode.Create))
{
 document.Write(file);
}
Document document = new Document();
Section section = document.Sections.Add();

using (SqlConnection connection = new SqlConnection("..."))
{
 connection.Open();

 string query = "SELECT data FROM images WHERE id=3";
 SqlCommand cmd = new SqlCommand(query, connection);
 byte[] blob = (byte[]) cmd.ExecuteScalar();

 Image image = new Image(new MemoryStream(blob));
 section.Paragraphs.Add(image);
}

using (FileStream file = new FileStream("out.pdf", FileMode.Create))
{
 document.Write(file);
}

Code sample: Construct an image from a memory stream (C#)
Multi-frame images
For all constructor overloads that were discussed above, an additional overload exists that takes an extra integer argument. This is used as the frame index in case the image has multiple frames. This is typically the case in multi-page TIFF images. There is also a FrameIndex property to select the frame after construction. Finally there is a FrameCount property that returns the number of frames in the image.

Download TallPDF.NET 6.0

							We will send you a download link
						

	

	

	Your name*

	Your e-mail*

	Newsletter	Subscribe to newsletter

	

	

	

	

	Phone
This field is for validation purposes and should be left unchanged.

Download

							Why do we ask your email address?
						
We send tips that speed up your evaluation
We let you know about bug fixes
You can always unsubscribe with one click
We never share your address with a 3rd party

							Thank you for your download

We have sent an email with a download link.

Our products
PDFKit.NET 5.0
Create and manipulate PDF documents
TallPDF.NET 5.0
Generate PDF on the fly
PDFRasterizer.NET 4.0
Render PDF pages cross-platform

Support resources
	Code samples
	Submit issue
	Contact
	Licensing Model

Legal
	EULA
	Privacy

LinkedIn

Twitter

				© 2001-2024 TallComponents BV. All rights reserved.
							

