
	Products
	Pricing
	Documentation
	Support

							Login
					

							Cart
					

Your cart is empty. See pricing.
					My order
				

	

Total:

							Order
					

	Home
	Products
	Pricing
	Documentation
	Support

							Login
					

LinkedIn

Twitter

PDFKit.NET 5.0
Create and manipulate PDF documents. Split, append, stamp, encrypt, extract, fill and more.

TallPDF.NET 5.0
Generate PDF on the fly, from scratch, use code, XML/XSL or a combination.

PDFRasterizer.NET 4.0
Render PDF pages pixel-perfect on Windows, MacOS and Linux

 Find the right product

							All code samples
					

PDFKit.NET 5.0Guide
API reference
Code samples
Changelog

TallPDF.NET 5.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0 is now available. Supports .NET Core. Renders pixel-perfectly.

							Try it now
					

TallPDF.NET 6.0

							Download trial
					

	
							TallPDF.NET 6.0

							
															beta
	
							PDFRasterizer.NET 4.0

							
							
															newest
	
							TallPDF.NET 5.0

							
							
															newest
	
							TallPDF.NET 4.0

															old
	
							PDFKit.NET 5.0

							
							
															newest
	
							PDFKit.NET 4.0

															old
	
							PDFRasterizer.NET 3.0

															old

	Guide
	API reference
	Code samples
	Changelog

Product is in Beta
This product is in the beta phase and therefore subject to change.

HomeProductsTallPDF.NET 6.0Guide

	Introduction
	Document
	Sections
	Paragraphs
	Text
	Tables
	Images
	Drawings and shapes
	Context fields
	Event-driven generation
	Extend TallPDF.NET
	Actions
	Convert XHTML to PDF

Event-Driven Generation
It is possible to add content in an event-driven manner. While the PDF document is being generated, events are fired. In the event handlers you provide content to be rendered. Using this model, TallPDF.NET will flash out pages while generating. Consequently the memory consumption is limited to the resources of a single page. This make TallPDF.NET the ideal component for generating large documents in a heavy-load environment.
By default, TallPDF.NET does not generate in event-driven mode. To generate in event-driven mde, you should call the Document.Write overload that takes an extra boolean as follows:
CopyDocument document = ...;
System.Web.HttpResponse httpResponse = ...;
FileStream file = ...;

// NOT event-driven
document.Write(file);
document.Write(file, false);
document.Write(httpResponse);
document.Write(httpResponse, false);

// event-driven
document.Write(file, true);
document.Write(httpResponse, true);
Document document = ...;
System.Web.HttpResponse httpResponse = ...;
FileStream file = ...;

// NOT event-driven
document.Write(file);
document.Write(file, false);
document.Write(httpResponse);
document.Write(httpResponse, false);

// event-driven
document.Write(file, true);
document.Write(httpResponse, true);

Code sample: Generate in event-driven mode by selecting the Document.Write overload (C#)
Restrictions
If you choose to generate the PDF document in an event-driven manner, you should be aware of a number of restrictions. These restrictions are a consequence of the forward-only, non-cached nature of the generation process. They should be considered as a trade-off between functionality and speed/memory footprint.

	
Cell.ColSpan is ignored. If a cell should span multiple columns, set its PreferredWidth property to a larger value so that is spans multiple columns.
	
Cell.FitToContent is ignored. You must set the PreferredWidth property to a predefined value.
	
Each section starts on a new page. The Section.StartOnNewPage property is ignored. If you want to switch to a different page layout, you can do this by handling the QueryPageSettings event which is fired for each page. If you want to switch to different headers/footers, you can do this by handling the StartPage and EndPage events which are fired for each page.
	
You can not cross-reference paragraphs from fragments.
	
Context fields are not resolved.
	
You cannot use the CrossreferenceSection class to generate a table of contents or a list of figures/tables.

Section Events
The following events are fired by the Section class.
Events fired by Section
 	
Event	
Fired when	
Do this in your handler
	
QueryPageSettings	
Just before a new page will be added	
Provide the page settings such as the size of the different page boxes (media box, bleed box, etc.).
	
StartPage	
Just after a new page has been added	
Define areas on this page.
	
EndPage	
Just before a new page will be added.	
Add some final content.

ParagraphCollection Events
The following events are fired by the ParagraphCollection class.
Events fired by ParagraphCollection
 	
Event	
Fired when	
Do this in your handler
	
PrintFirstParagraph	
Just before the first paragraph on the current page is added.	
Provide a paragraph that should be the first on the current page.
	
PrintParagraph	
New content is required.	
Provide a new paragraph.

Paragraph Events
The following events are fired by the Paragraph class.
Events fired by Paragraph
 	
Event	
Fired when	
Do this in your handler
	
BreakParagraph	
Before a paragraph is broken across pages.	
Application specific.
	
ContinueParagraph	
Before a paragraph continues on the next page.	
Application specific.
	
EndParagraph	
After a paragraph has been fully rendered.	
Application specific.
	
RollbackParagraph	
After a paragraph has been rolled back due to a text flow contraint such as keep-with-next.	
Application specific.
	
TransformParagraph	
After a paragraph has been tranformed. E.g. due to a vertical alignment setting of a table cell.	
Application specific.

TextParagraph Events
The following events are fired by the TextParagraph class.
Events fired by TextParagraph
 	
Event	
Fired when	
Do this in your handler
	
LineBreak	
When a text line needs to be broken.	
Specifiy where to break the line. If you do not handle this event, lines are broken at whitespace occurrence which is perfectly reasonable.

RowCollection Events
The following events are fired by the RowCollection class.
Events fired by RowCollection
 	
Event	
Fired when	
Do this in your handler
	
PrintFirstRow	
Just before the first row on the current page is added to the current table. Note that this even is fired n times if the table spans n pages.	
Provide a row that should be the first on the current page.
	
PrintRow	
A new row is required.	
Provide a new row.

Example: Firehose Generation from SQL
Generating a PDF document from data stored inside a SQL database can very well be done in an event-driven manner. This way you can fully profit from the performance benefits of the forward-only SqlDataReader.
Create a SqlDataReader
A SqlDataReader provides a forward-only, read-only pointer over data retrieved from a SQL database. The following code sample shows you how to create a SqlDataReader instance. (The pubs database is installed together with the .NET Framework SDK.)
CopySqlConnection connection = new SqlConnection(
 @"server=(local)\NetSDK;database=pubs;Trusted_Connection=yes");
SqlCommand command = new SqlCommand(@"select * from Authors", connection);
connection.Open();
SqlDataReader reader = command.ExecuteReader();
SqlConnection connection = new SqlConnection(
 @"server=(local)\NetSDK;database=pubs;Trusted_Connection=yes");
SqlCommand command = new SqlCommand(@"select * from Authors", connection);
connection.Open();
SqlDataReader reader = command.ExecuteReader();

Code sample: Create a SqlDataReader in C#
Prepare Table.Rows
The next step is to setup the Table.Rows class for generating rows that correspond to the records in the database. First pass the reader to the Data member of the RowCollection class. The Data member allows you to associate any data with the RowCollection collection. This data will be available in the event handler that will provide the rows. Next, the event handlers are connected to the RowCollection class.
CopyTable table = new Table();
table.Rows.Data = reader;
table.Rows.PrintRow += new PrintRowEventHandler(PrintRow);
table.Rows.PrintFirstRow += new PrintRowEventHandler(PrintFirstRow);
Table table = new Table();
table.Rows.Data = reader;
table.Rows.PrintRow += new PrintRowEventHandler(PrintRow);
table.Rows.PrintFirstRow += new PrintRowEventHandler(PrintFirstRow);

Code sample: Prepare Table.Rows in C#
Handle PrintRow Event
When the Document.Write method is called with the pull argument set to true, the event handler PrintRow will be called somewhere during the generation process. The following shows how to pull the content from the SqlDataReader and pass it on to the generation process.
Copybool PrintRow(object sender, PrintRowEventArgs args)
{
 SqlDataReader reader = args.Data as SqlDataReader;
 if (null != reader && reader.Read())
 {
 args.Row = new Row();
 addCell(
 args.Row,
 reader.GetValue(2).ToString() + " " + reader.GetValue(1).ToString());
 addCell(args.Row, reader.GetValue(4).ToString());
 addCell(args.Row, reader.GetValue(5).ToString());

 args.MoreContent = true; // we have more content
 }
 args.MoreContent = false; // no more content
}
bool PrintRow(object sender, PrintRowEventArgs args)
{
 SqlDataReader reader = args.Data as SqlDataReader;
 if (null != reader && reader.Read())
 {
 args.Row = new Row();
 addCell(
 args.Row,
 reader.GetValue(2).ToString() + " " + reader.GetValue(1).ToString());
 addCell(args.Row, reader.GetValue(4).ToString());
 addCell(args.Row, reader.GetValue(5).ToString());

 args.MoreContent = true; // we have more content
 }
 args.MoreContent = false; // no more content
}

Code sample: Handle PrintRow Event in C#
addCell is a helper method that adds a cell to the row instance and is rather trivial.
Handle PrintFirstRow Event
The PrintFirstRow event is fired to allow the handler to add one or more header rows. This event is fired for each page that the table spans. The following shows how to provide a single header row.
Copyvoid PrintFirstRow(object sender, PrintRowEventArgs args)
{
 args.Row = new Row();

 addCell(args.Row, "Author");
 addCell(args.Row, "Address");
 addCell(args.Row, "City");

 // Only one line, no more content
 args.MoreContent = false;
}
void PrintFirstRow(object sender, PrintRowEventArgs args)
{
 args.Row = new Row();

 addCell(args.Row, "Author");
 addCell(args.Row, "Address");
 addCell(args.Row, "City");

 // Only one line, no more content
 args.MoreContent = false;
}

Code sample: Handle PrintFirstRow Event in C#
Finalize
After generation, the connection to the database is closed:
Copytry
{
 Document document = new Document();
 //...
 //...
 document.Write(reader, true);
}
finally
{
 //...
 if (null != connection) connection.Close();
}
try
{
 Document document = new Document();
 //...
 //...
 document.Write(reader, true);
}
finally
{
 //...
 if (null != connection) connection.Close();
}

Code sample: After generation, close the SQL connection

Download TallPDF.NET 6.0

							We will send you a download link
						

	

	

	Your name*

	Your e-mail*

	Newsletter	Subscribe to newsletter

	

	

	

	

	Phone
This field is for validation purposes and should be left unchanged.

Download

							Why do we ask your email address?
						
We send tips that speed up your evaluation
We let you know about bug fixes
You can always unsubscribe with one click
We never share your address with a 3rd party

							Thank you for your download

We have sent an email with a download link.

Our products
PDFKit.NET 5.0
Create and manipulate PDF documents
TallPDF.NET 5.0
Generate PDF on the fly
PDFRasterizer.NET 4.0
Render PDF pages cross-platform

Support resources
	Code samples
	Submit issue
	Contact
	Licensing Model

Legal
	EULA
	Privacy

LinkedIn

Twitter

				© 2001-2024 TallComponents BV. All rights reserved.
							

