
	Products
	Pricing
	Documentation
	Support

							Login
					

							Cart
					

Your cart is empty. See pricing.
					My order
				

	

Total:

							Order
					

	Home
	Products
	Pricing
	Documentation
	Support

							Login
					

LinkedIn

Twitter

PDFKit.NET 5.0
Create and manipulate PDF documents. Split, append, stamp, encrypt, extract, fill and more.

TallPDF.NET 5.0
Generate PDF on the fly, from scratch, use code, XML/XSL or a combination.

PDFRasterizer.NET 4.0
Render PDF pages pixel-perfect on Windows, MacOS and Linux

 Find the right product

							All code samples
					

PDFKit.NET 5.0Guide
API reference
Code samples
Changelog

TallPDF.NET 5.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0 is now available. Supports .NET Core. Renders pixel-perfectly.

							Try it now
					

PDFKit.NET 4.0

							Download trial
					

	
							TallPDF.NET 6.0

							
															beta
	
							PDFRasterizer.NET 4.0

							
							
															newest
	
							TallPDF.NET 5.0

							
							
															newest
	
							TallPDF.NET 4.0

															old
	
							PDFKit.NET 5.0

							
							
															newest
	
							PDFKit.NET 4.0

															old
	
							PDFRasterizer.NET 3.0

															old

	Guide
	API reference
	Code samples
	Changelog

HomeProductsPDFKit.NET 4.0Code samples

	How to downscale all images in a PDF
	
	How to generate and export certificates
	
	How to downscale all images in a PDF
	
	Add Stamp to PDF
	
	How to reduce PDF file size
	
	How do I create graphics with Icc based colors
	
	Highlight fields in PDF
	
	Add a note to PDF
	
	Resize PDF pages
	
	Verify a custom digital PDF signature
	
	Extract glyph boxes from PDF
	
	Use TrueType font collections
	
	Layout text with MultilineTextShape
	
	Merge PDF files in C# .NET
	
	How do I extract page destinations from bookmarks?
	
	Clip PDF page content in C#
	
	Fill PDF form
	
	Extract glyphs and sort by reading order
	
	Add bookmarks to PDF
	
	How to scale content of PDF
	
	Create rectangles with rounded corners
	
	Create text with decorations
	
	Create layers in PDF and draw on each layer
	
	TIFF to PDF C#
	
	Crop content on a PDF page
	
	How to embed files in a PDF document
	
	Remove graphics from PDF
	
	Change the color inside a PDF
	
	Import FDF into PDF
	
	Flatten PDF form
	
	Digitally sign a PDF form in C# or VB.NET
	
	Vector graphics in PDF
	
	Translate PDF page content
	
	Extract graphics from PDF
	
	Determine the content bounding box
	
	Search text in PDF
	
	Convert PDF to plain text
	
	Flatten Markup Annotation
	
	Add text field to PDF
	
	Extract embedded files from PDF
	
	Extract images from PDF
	
	Add a Diagonal Watermark to PDF in C#
	
	Fit image to PDF page
	
	Add simple html text to PDF
	
	Add multiline text to a PDF document
	
	Add single-line text to PDF
	
	Create a new digitally signed PDF document
	
	PDF Viewer Preferences
	
	Change page orientation PDF
	
	Split PDF pages in C# and VB.NET
	
	Append two or more existing PDF files
	
	Determine if a PDF only contains images
	
	Add footer to PDF
	
	Convert SVG to PDF
	
	Fill in a PDF form using MVC
	
	Add hyperlink to PDF
	
	Rotate a PDF page
	
	Change the formatting of a numeric field
	
	How to mirror PDF pages and other shapes
	
	Fill in a template PDF document
	
	How to add autosized text to PDF
	
	Create formfields in PDF documents
	
	Export FDF from PDF form
	
	Add a link with an internal destination to PDF
	
	Remove PDF security settings
	
	Add a link to PDF with an external destination
	
	How to sign and verify updates to a PDF document
	
	Embed TrueType font
	
	How to create a tiling for shapes in PDF
	
	EMF to PDF as vector image
	
	EMF to PDF as raster image
	
	Replace field with image
	
	Add a rubber stamp annotation with a custom icon
	
	Create a text annotation in PDF with rich text
	
	Read and write meta data from PDF
	
	Create a custom signature handler to sign and verify PDF documents
	
	Download and convert image to PDF
	
	Add barcodes to PDF
	
	Use multiple licenses
	
	Disable submit button after submitting
	

Fill in a PDF form using MVC
In this sample we will create a small ASP.NET application to fill in pdf forms, using a webform.

To start off, create a new blank MVC project in visual studio.
We will first start by creating a controller for the webserver: create a new Controller and call it “FormFillController”. Add the following code to it:
Copyusing System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using TallComponents.PDF.Forms.Fields;
using System.IO;
using TallComponents.PDF;
using TallComponents.PDF.Annotations.Widgets;

namespace FormFill.Controllers
{
 public class FormFillController : Controller
 {

 //show form to user when rendering the FormFillController
 public ActionResult Index()
 {
 return View();
 }

 //when form is submitted, this function is called with the field parameters
 public ActionResult HandleForm(string username, string email, Boolean flatten)
 {
 FileStreamResult pdf = fillPDF(username, email, flatten); //fill in existing pdf and return the pdf as an action result

 pdf.FileStream.Position = 0; //since the stream has been read, reset it to the start so we use it again

 return pdf; //return the pdf as weboutput to the user
 }

 //fill in existing pdf and return the pdf as an action result
 private FileStreamResult fillPDF(String username, String email, Boolean flatten)
 {
 //open the pdf form
 using (FileStream source = new FileStream(Server.MapPath("~/simpleform.pdf"), FileMode.Open, FileAccess.Read))
 {
 Document document = new Document(source);

 //get the correct textfields and fill in the corresponding values
 TextField userfield = document.Fields["username"] as TextField;
 userfield.Value = username;

 TextField emailfield = document.Fields["e-mail"] as TextField;
 emailfield.Value = email;

 //if flatten, then flatten the form fields (make them uneditable).
 if (flatten)
 {
 foreach (Widget widget in userfield.Widgets)
 {
 widget.Persistency = WidgetPersistency.Flatten;
 }

 foreach (Widget widget in emailfield.Widgets)
 {
 widget.Persistency = WidgetPersistency.Flatten;
 }
 }

 //since we don't write to disk, write the pdf to a memory stream and return it as a pdf
 MemoryStream ms = new MemoryStream();
 document.Write(ms);
 ms.Flush();
 ms.Position = 0;
 return File(ms, "application/pdf");
 }
 }
 }
}using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using TallComponents.PDF.Forms.Fields;
using System.IO;
using TallComponents.PDF;
using TallComponents.PDF.Annotations.Widgets;

namespace FormFill.Controllers
{
 public class FormFillController : Controller
 {

 //show form to user when rendering the FormFillController
 public ActionResult Index()
 {
 return View();
 }

 //when form is submitted, this function is called with the field parameters
 public ActionResult HandleForm(string username, string email, Boolean flatten)
 {
 FileStreamResult pdf = fillPDF(username, email, flatten); //fill in existing pdf and return the pdf as an action result

 pdf.FileStream.Position = 0; //since the stream has been read, reset it to the start so we use it again

 return pdf; //return the pdf as weboutput to the user
 }

 //fill in existing pdf and return the pdf as an action result
 private FileStreamResult fillPDF(String username, String email, Boolean flatten)
 {
 //open the pdf form
 using (FileStream source = new FileStream(Server.MapPath("~/simpleform.pdf"), FileMode.Open, FileAccess.Read))
 {
 Document document = new Document(source);

 //get the correct textfields and fill in the corresponding values
 TextField userfield = document.Fields["username"] as TextField;
 userfield.Value = username;

 TextField emailfield = document.Fields["e-mail"] as TextField;
 emailfield.Value = email;

 //if flatten, then flatten the form fields (make them uneditable).
 if (flatten)
 {
 foreach (Widget widget in userfield.Widgets)
 {
 widget.Persistency = WidgetPersistency.Flatten;
 }

 foreach (Widget widget in emailfield.Widgets)
 {
 widget.Persistency = WidgetPersistency.Flatten;
 }
 }

 //since we don't write to disk, write the pdf to a memory stream and return it as a pdf
 MemoryStream ms = new MemoryStream();
 document.Write(ms);
 ms.Flush();
 ms.Position = 0;
 return File(ms, "application/pdf");
 }
 }
 }
}

The Index() function will return a new webform (which we will create shortly) and the HandleForm function is called when the user presses the “Submit” button on the online form. Then, the field values are set in the PDF and it is returned to the user. Now that the controller has been made, it is time to make the view for the user: this will contain a webform which the user can fill out and its contents will be saved to the PDF
On the right side, you will see several folders: open the “Views” folder and create a new view in the “FormFill” subfolder and call it “Index” (deselect the “Select Master Page” option).
Now add the following code to it:
Copy<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Index</title>
</head>
<body>
 <div>
 @using (Html.BeginForm("HandleForm", "FormFill"))
 {

 <table>
 <tr><td> Enter your username:</td><td>@Html.TextBox("username")</td></tr>
 <tr><td> Enter your e-mail:</td><td>@Html.TextBox("email")</td></tr>
 <tr><td colspan=2>@Html.CheckBox("flatten") flatten pdf</td></tr>
 </table>

 <input type="submit" value="Submit" />
 }
 </div>
</body>
</html><!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Index</title>
</head>
<body>
 <div>
 @using (Html.BeginForm("HandleForm", "FormFill"))
 {

 <table>
 <tr><td> Enter your username:</td><td>@Html.TextBox("username")</td></tr>
 <tr><td> Enter your e-mail:</td><td>@Html.TextBox("email")</td></tr>
 <tr><td colspan=2>@Html.CheckBox("flatten") flatten pdf</td></tr>
 </table>

 <input type="submit" value="Submit" />
 }
 </div>
</body>
</html>

As you can see this code is a mix between regular HTML code and C#. Two textboxes are added where the user can enter his/her username and email and a checkbox is added to set whether the resulting PDF form fields have to be “flattened”, i.e. whether the resulting PDF contains fields which cannot be edited.
At the start of the table, a reference is made to the function HandleForm(). When the user clicks on the submit button, all the form values are sent to this function as parameters (so in this case: two Strings and one Boolean).
Together the View and the Controller will handle the form filling, we now only have to connect them to each other. Open the “Global.asax” file and set the Controller to “FormFill” and the action to “Index”. Now when you run the project the HTML form will be shown and after pressing “Submit”, the contents will be save in a PDF file and is shown to the user.

Download PDFKit.NET 4.0

							We will send you a download link
						

	

	

	Your name*

	Your e-mail*

	Newsletter	Subscribe to newsletter

	

	

	

	

	Email
This field is for validation purposes and should be left unchanged.

Download

							Why do we ask your email address?
						
We send tips that speed up your evaluation
We let you know about bug fixes
You can always unsubscribe with one click
We never share your address with a 3rd party

							Thank you for your download

We have sent an email with a download link.

Our products
PDFKit.NET 5.0
Create and manipulate PDF documents
TallPDF.NET 5.0
Generate PDF on the fly
PDFRasterizer.NET 4.0
Render PDF pages cross-platform

Support resources
	Code samples
	Submit issue
	Contact
	Licensing Model

Legal
	EULA
	Privacy

LinkedIn

Twitter

				© 2001-2024 TallComponents BV. All rights reserved.
							

