
	Products
	Pricing
	Documentation
	Support

							Login
					

							Cart
					

Your cart is empty. See pricing.
					My order
				

	

Total:

							Order
					

	Home
	Products
	Pricing
	Documentation
	Support

							Login
					

LinkedIn

Twitter

PDFKit.NET 5.0
Create and manipulate PDF documents. Split, append, stamp, encrypt, extract, fill and more.

TallPDF.NET 5.0
Generate PDF on the fly, from scratch, use code, XML/XSL or a combination.

PDFRasterizer.NET 4.0
Render PDF pages pixel-perfect on Windows, MacOS and Linux

 Find the right product

							All code samples
					

PDFKit.NET 5.0Guide
API reference
Code samples
Changelog

TallPDF.NET 5.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0Guide
API reference
Code samples
Changelog

PDFRasterizer.NET 4.0 is now available. Supports .NET Core. Renders pixel-perfectly.

							Try it now
					

PDFKit.NET 4.0

							Download trial
					

	
							TallPDF.NET 6.0

							
															beta
	
							PDFRasterizer.NET 4.0

							
							
															newest
	
							TallPDF.NET 5.0

							
							
															newest
	
							TallPDF.NET 4.0

															old
	
							PDFKit.NET 5.0

							
							
															newest
	
							PDFKit.NET 4.0

															old
	
							PDFRasterizer.NET 3.0

															old

	Guide
	API reference
	Code samples
	Changelog

HomeProductsPDFKit.NET 4.0Code samples

	How to downscale all images in a PDF
	
	How to generate and export certificates
	
	How to downscale all images in a PDF
	
	Add Stamp to PDF
	
	How to reduce PDF file size
	
	How do I create graphics with Icc based colors
	
	Highlight fields in PDF
	
	Add a note to PDF
	
	Resize PDF pages
	
	Verify a custom digital PDF signature
	
	Extract glyph boxes from PDF
	
	Use TrueType font collections
	
	Layout text with MultilineTextShape
	
	Merge PDF files in C# .NET
	
	How do I extract page destinations from bookmarks?
	
	Clip PDF page content in C#
	
	Fill PDF form
	
	Extract glyphs and sort by reading order
	
	Add bookmarks to PDF
	
	How to scale content of PDF
	
	Create rectangles with rounded corners
	
	Create text with decorations
	
	Create layers in PDF and draw on each layer
	
	TIFF to PDF C#
	
	Crop content on a PDF page
	
	How to embed files in a PDF document
	
	Remove graphics from PDF
	
	Change the color inside a PDF
	
	Import FDF into PDF
	
	Flatten PDF form
	
	Digitally sign a PDF form in C# or VB.NET
	
	Vector graphics in PDF
	
	Translate PDF page content
	
	Extract graphics from PDF
	
	Determine the content bounding box
	
	Search text in PDF
	
	Convert PDF to plain text
	
	Flatten Markup Annotation
	
	Add text field to PDF
	
	Extract embedded files from PDF
	
	Extract images from PDF
	
	Add a Diagonal Watermark to PDF in C#
	
	Fit image to PDF page
	
	Add simple html text to PDF
	
	Add multiline text to a PDF document
	
	Add single-line text to PDF
	
	Create a new digitally signed PDF document
	
	PDF Viewer Preferences
	
	Change page orientation PDF
	
	Split PDF pages in C# and VB.NET
	
	Append two or more existing PDF files
	
	Determine if a PDF only contains images
	
	Add footer to PDF
	
	Convert SVG to PDF
	
	Fill in a PDF form using MVC
	
	Add hyperlink to PDF
	
	Rotate a PDF page
	
	Change the formatting of a numeric field
	
	How to mirror PDF pages and other shapes
	
	Fill in a template PDF document
	
	How to add autosized text to PDF
	
	Create formfields in PDF documents
	
	Export FDF from PDF form
	
	Add a link with an internal destination to PDF
	
	Remove PDF security settings
	
	Add a link to PDF with an external destination
	
	How to sign and verify updates to a PDF document
	
	Embed TrueType font
	
	How to create a tiling for shapes in PDF
	
	EMF to PDF as vector image
	
	EMF to PDF as raster image
	
	Replace field with image
	
	Add a rubber stamp annotation with a custom icon
	
	Create a text annotation in PDF with rich text
	
	Read and write meta data from PDF
	
	Create a custom signature handler to sign and verify PDF documents
	
	Download and convert image to PDF
	
	Add barcodes to PDF
	
	Use multiple licenses
	
	Disable submit button after submitting
	

Remove graphics from PDF
This code sample shows how to partly erase images from a PDF under an explicitly specified rectangle. For brushes and rectangles the namespace is mentioned explicitly to avoid confusion as both classes occur in the System.Drawing namespace as well as in the TallComponents.PDF namespace.
In the main method we replace an existing page with a newly created one. On the new page we add edited collection of shapes from the original page.
Copyconst string inputFileName = @"..\..\..\inputDocuments\redaction.pdf";
const string outputFileName = "out.pdf";

using (FileStream input = File.Open(inputFileName, FileMode.Open))
using (FileStream output = File.Create(outputFileName))
{
 // open file for editing
 Document doc = new Document(input);

 // page to edit
 Page page = doc.Pages[0];
 ShapeCollection shapes = page.CreateShapes();

 // create new page there modfied content will be stored
 Page newPage = page.Clone(PageCloneSettings.NoOriginalGraphics);

 // specify the area to clear and a brush to use
 TallComponents.PDF.Rectangle clearRect = new TallComponents.PDF.Rectangle(250, 200, 200, 400);
 System.Drawing.Brush clearBrush = Brushes.Red;

 // run the clear routine
 ClearArea(shapes, clearRect, clearBrush, new Matrix());

 // copy the edited content
 newPage.Overlay.Add(shapes);

 // replace old page with new one
 doc.Pages.RemoveAt(0);
 doc.Pages.Insert(0, newPage);

 doc.Write(output);
}

Process.Start(outputFileName);const string inputFileName = @"..\..\..\inputDocuments\redaction.pdf";
const string outputFileName = "out.pdf";

using (FileStream input = File.Open(inputFileName, FileMode.Open))
using (FileStream output = File.Create(outputFileName))
{
 // open file for editing
 Document doc = new Document(input);

 // page to edit
 Page page = doc.Pages[0];
 ShapeCollection shapes = page.CreateShapes();

 // create new page there modfied content will be stored
 Page newPage = page.Clone(PageCloneSettings.NoOriginalGraphics);

 // specify the area to clear and a brush to use
 TallComponents.PDF.Rectangle clearRect = new TallComponents.PDF.Rectangle(250, 200, 200, 400);
 System.Drawing.Brush clearBrush = Brushes.Red;

 // run the clear routine
 ClearArea(shapes, clearRect, clearBrush, new Matrix());

 // copy the edited content
 newPage.Overlay.Add(shapes);

 // replace old page with new one
 doc.Pages.RemoveAt(0);
 doc.Pages.Insert(0, newPage);

 doc.Write(output);
}

Process.Start(outputFileName);

Copy Const inputFileName As String = "..\..\..\inputDocuments\redaction.pdf"
 Const outputFileName As String = "out.pdf"

 Using input As FileStream = File.Open(inputFileName, FileMode.Open)
 Using output As FileStream = File.Create(outputFileName)
 ' open file for editing
 Dim doc As New Document(input)

 ' page to edit
 Dim page As Page = doc.Pages(0)
 Dim shapes As ShapeCollection = page.CreateShapes()

 ' create new page there modfied content will be stored
 Dim newPage As Page = page.Clone(PageCloneSettings.NoOriginalGraphics)

 ' specify the area to clear and a brush to use
 Dim clearRect As New TallComponents.PDF.Rectangle(250, 200, 200, 400)
 Dim clearBrush As System.Drawing.Brush = Brushes.Red

 ' run the clear routine
 ClearArea(shapes, clearRect, clearBrush, New Matrix())

 ' copy the edited content
 newPage.Overlay.Add(shapes)

 ' replace old page with new one
 doc.Pages.RemoveAt(0)
 doc.Pages.Insert(0, newPage)

 doc.Write(output)
 End Using
 End Using

 Process.Start(outputFileName) Const inputFileName As String = "..\..\..\inputDocuments\redaction.pdf"
 Const outputFileName As String = "out.pdf"

 Using input As FileStream = File.Open(inputFileName, FileMode.Open)
 Using output As FileStream = File.Create(outputFileName)
 ' open file for editing
 Dim doc As New Document(input)

 ' page to edit
 Dim page As Page = doc.Pages(0)
 Dim shapes As ShapeCollection = page.CreateShapes()

 ' create new page there modfied content will be stored
 Dim newPage As Page = page.Clone(PageCloneSettings.NoOriginalGraphics)

 ' specify the area to clear and a brush to use
 Dim clearRect As New TallComponents.PDF.Rectangle(250, 200, 200, 400)
 Dim clearBrush As System.Drawing.Brush = Brushes.Red

 ' run the clear routine
 ClearArea(shapes, clearRect, clearBrush, New Matrix())

 ' copy the edited content
 newPage.Overlay.Add(shapes)

 ' replace old page with new one
 doc.Pages.RemoveAt(0)
 doc.Pages.Insert(0, newPage)

 doc.Write(output)
 End Using
 End Using

 Process.Start(outputFileName)

The ClearArea method enumerates all the shapes inside the given shape collection. The method replaces all occurrences of the ImageShape(that are overlapped by the given rectangular area) with an edited ImageShape.
Copypublic static void ClearArea(ShapeCollection shapes, TallComponents.PDF.Rectangle area,
 System.Drawing.Brush clearBrush, Matrix transform)
{
 // set the current transform for the collection
 Matrix currentTransform = GetShapeTransform(shapes, transform);

 // examine shapes in order to find the image and edit it.
 for (int i = 0; i < shapes.Count; i++)
 {
 Shape shape = shapes[i];

 if (shape is ImageShape)
 {
 // process the image shape
 ImageShape imageShape = shape as ImageShape;

 // determine whether the imageShape is overlapped by
 // the given rectangle
 TallComponents.PDF.Rectangle imageShapeRect = GetImageShapeRectangle(imageShape, currentTransform);
 RectangleF intersectionRect = IntersectRectangles(area, imageShapeRect);

 if (!intersectionRect.IsEmpty)
 {
 // clear overlapped area of the image shape
 ImageShape clearedImageShape = ClearImageArea(imageShape, intersectionRect,
 clearBrush, currentTransform);

 // replace the old image shape with new one
 shapes.RemoveAt(i);
 shapes.Insert(i, clearedImageShape);
 }
 }
 else if (shape is ShapeCollection) //continue recursively
 {
 ClearArea(shape as ShapeCollection, area, clearBrush, currentTransform);
 }
 }
}


``` vb
    Public Sub ClearArea(shapes As ShapeCollection, area As TallComponents.PDF.Rectangle, clearBrush As System.Drawing.Brush, transform As Matrix)
        ' set the current transform for the collection
        Dim currentTransform As Matrix = GetShapeTransform(shapes, transform)

        ' examine shapes in order to find the image and edit it.
        For i As Integer = 0 To shapes.Count - 1
            Dim shape As Shape = shapes(i)

            If TypeOf shape Is ImageShape Then
                ' process the image shape
                Dim imageShape As ImageShape = TryCast(shape, ImageShape)

                ' determine whether the imageShape is overlapped by
                ' the given rectangle
                Dim imageShapeRect As TallComponents.PDF.Rectangle = GetImageShapeRectangle(imageShape, currentTransform)
                Dim intersectionRect As RectangleF = IntersectRectangles(area, imageShapeRect)

                If Not intersectionRect.IsEmpty Then
                    ' clear overlapped area of the image shape
                    Dim clearedImageShape As ImageShape = ClearImageArea(imageShape, intersectionRect, clearBrush, currentTransform)

                    ' replace the old image shape with new one
                    shapes.RemoveAt(i)
                    shapes.Insert(i, clearedImageShape)
                End If
            ElseIf TypeOf shape Is ShapeCollection Then
                'continue recursively
                ClearArea(TryCast(shape, ShapeCollection), area, clearBrush, currentTransform)
            End If
        Next
    End Subpublic static void ClearArea(ShapeCollection shapes, TallComponents.PDF.Rectangle area,
                        System.Drawing.Brush clearBrush, Matrix transform)
{
    // set the current transform for the collection
    Matrix currentTransform = GetShapeTransform(shapes, transform);

    // examine shapes in order to find the image and edit it.
    for (int i = 0; i < shapes.Count; i++)
    {
        Shape shape = shapes[i];

        if (shape is ImageShape)
        {
            // process the image shape
            ImageShape imageShape = shape as ImageShape;

            // determine whether the imageShape is overlapped by
            // the given rectangle
            TallComponents.PDF.Rectangle imageShapeRect = GetImageShapeRectangle(imageShape, currentTransform);
            RectangleF intersectionRect = IntersectRectangles(area, imageShapeRect);

            if (!intersectionRect.IsEmpty)
            {
                // clear overlapped area of the image shape
                ImageShape clearedImageShape = ClearImageArea(imageShape, intersectionRect,
                                                        clearBrush, currentTransform);

                // replace the old image shape with new one
                shapes.RemoveAt(i);
                shapes.Insert(i, clearedImageShape);
            }
        }
        else if (shape is ShapeCollection) //continue recursively
        {
            ClearArea(shape as ShapeCollection, area, clearBrush, currentTransform);
        }
    }
}


``` vb
 Public Sub ClearArea(shapes As ShapeCollection, area As TallComponents.PDF.Rectangle, clearBrush As System.Drawing.Brush, transform As Matrix)
 ' set the current transform for the collection
 Dim currentTransform As Matrix = GetShapeTransform(shapes, transform)

 ' examine shapes in order to find the image and edit it.
 For i As Integer = 0 To shapes.Count - 1
 Dim shape As Shape = shapes(i)

 If TypeOf shape Is ImageShape Then
 ' process the image shape
 Dim imageShape As ImageShape = TryCast(shape, ImageShape)

 ' determine whether the imageShape is overlapped by
 ' the given rectangle
 Dim imageShapeRect As TallComponents.PDF.Rectangle = GetImageShapeRectangle(imageShape, currentTransform)
 Dim intersectionRect As RectangleF = IntersectRectangles(area, imageShapeRect)

 If Not intersectionRect.IsEmpty Then
 ' clear overlapped area of the image shape
 Dim clearedImageShape As ImageShape = ClearImageArea(imageShape, intersectionRect, clearBrush, currentTransform)

 ' replace the old image shape with new one
 shapes.RemoveAt(i)
 shapes.Insert(i, clearedImageShape)
 End If
 ElseIf TypeOf shape Is ShapeCollection Then
 'continue recursively
 ClearArea(TryCast(shape, ShapeCollection), area, clearBrush, currentTransform)
 End If
 Next
 End Sub

The ClearImageArea method clears parts of the image shapes that are underneath the given rectangular area using given brush.

Copyprivate static ImageShape ClearImageArea(ImageShape imageShape, RectangleF area, System.Drawing.Brush clearBrush,
 Matrix transform)
{
 TallComponents.PDF.Rectangle shapeRect = GetImageShapeRectangle(imageShape, transform);
 double scaleX = imageShape.Width / shapeRect.Width;
 double scaleY = imageShape.Height / shapeRect.Height;

 area = new RectangleF((float)(area.X * scaleX), (float)(area.Y * scaleY),
 (float)(area.Width * scaleX), (float)(area.Height * scaleY));

 // extract bitmap and prepare for editing
 Bitmap bitmap = imageShape.CreateBitmap();

 bitmap.SetResolution((float)imageShape.HorizontalResolution, (float)imageShape.VerticalResolution);

 // clear a part of the bitmap
 using (Graphics g = Graphics.FromImage(bitmap))
 {
 if (IsFlipped(imageShape, transform))
 {
 g.Transform = new Matrix(1, 0, 0, -1, 0, bitmap.Height);
 }

 g.FillRectangle(clearBrush, area);
 }

 // return a new image shape with the edited bitmap
 return new ImageShape(bitmap) { Transform = imageShape.Transform };
}

``` vb
    Private Function ClearImageArea(imageShape As ImageShape, area As RectangleF, clearBrush As System.Drawing.Brush, transform As Matrix) As ImageShape
        Dim shapeRect As TallComponents.PDF.Rectangle = GetImageShapeRectangle(imageShape, transform)
        Dim scaleX As Double = imageShape.Width / shapeRect.Width
        Dim scaleY As Double = imageShape.Height / shapeRect.Height

        area = New RectangleF(CSng(area.X * scaleX), CSng(area.Y * scaleY), CSng(area.Width * scaleX), CSng(area.Height * scaleY))

        ' extract bitmap and prepare for editing
        Dim bitmap As Bitmap = imageShape.CreateBitmap()

        bitmap.SetResolution(CSng(imageShape.HorizontalResolution), CSng(imageShape.VerticalResolution))

        ' clear a part of the bitmap
        Using g As Graphics = Graphics.FromImage(bitmap)
            If IsFlipped(imageShape, transform) Then
                g.Transform = New Matrix(1, 0, 0, -1, 0, bitmap.Height)
            End If

            g.FillRectangle(clearBrush, area)
        End Using

        ' return a new image shape with the edited bitmap
        Dim shape = New ImageShape(bitmap)
        shape.Transform = imageShape.Transform
        Return shape
    End Function
]]></code>
</codesnippet>

Few utility methods that are used in the code above.

``` csharp
private static TallComponents.PDF.Rectangle GetImageShapeRectangle(ImageShape imageShape, Matrix transform)
{
 Matrix shapeTransform = GetShapeTransform(imageShape, transform);

 // get the transformed shape rect
 PointF[] points = new[] { new PointF(0, 0),
 new PointF((float)(imageShape.Width), (float)(imageShape.Height)) };
 shapeTransform.TransformPoints(points);

 double width = points[1].X - points[0].X;
 double height = points[1].Y - points[0].Y;

 // flipped, so fix the rect
 if (height < 0)
 {
 PointF tmpPoint = points[0];

 points[0] = new PointF(points[0].X, points[1].Y);
 points[1] = new PointF(points[1].X, tmpPoint.Y);

 height = -height;
 }
 return new TallComponents.PDF.Rectangle(points[0].X, points[0].Y, width, height);
}

private static Matrix GetShapeTransform(ContentShape shape, Matrix transform)
{
 Matrix shapeTransform = transform.Clone();

 if (shape.Transform != null)
 {
 shapeTransform.Multiply(shape.Transform.CreateGdiMatrix());
 }
 return shapeTransform;
}

private static bool IsFlipped(ImageShape imageShape, Matrix transform)
{
 Matrix shapeTransform = GetShapeTransform(imageShape, transform);

 // get the transformed shape rect
 PointF[] points = new[] { new PointF(0, 0),
 new PointF((float)(imageShape.Width), (float)(imageShape.Height)) };
 shapeTransform.TransformPoints(points);

 return (points[1].Y - points[0].Y < 0);
}

static RectangleF IntersectRectangles(TallComponents.PDF.Rectangle rect1, TallComponents.PDF.Rectangle rect2)
{
 double rect2Right = rect2.Left + rect2.Width;
 double rect2Top = rect2.Bottom + rect2.Height;

 double rect1Right = rect1.Left + rect1.Width;
 double rect1Top = rect1.Bottom + rect1.Height;

 if ((rect2Right < rect1.Left || rect2.Left > rect1Right) ||
 (rect2.Bottom > rect1Top || rect2Top < rect1.Bottom))
 {
 return RectangleF.Empty;
 }

 double left = Math.Max(rect1.Left, rect2.Left);
 double bottom = Math.Max(rect1.Bottom, rect2.Bottom);

 double width = Math.Min(rect1Right, rect2Right) - left;
 double height = Math.Min(rect1Top, rect2Top) - bottom;

 float x = (float)((left - rect2.Left));
 float y = (float)(rect2.Height - (bottom + height - rect2.Bottom));

 RectangleF rect = new RectangleF(x, y, (float)width, (float)height);
 return rect;
}private static ImageShape ClearImageArea(ImageShape imageShape, RectangleF area, System.Drawing.Brush clearBrush,
 Matrix transform)
{
 TallComponents.PDF.Rectangle shapeRect = GetImageShapeRectangle(imageShape, transform);
 double scaleX = imageShape.Width / shapeRect.Width;
 double scaleY = imageShape.Height / shapeRect.Height;

 area = new RectangleF((float)(area.X * scaleX), (float)(area.Y * scaleY),
 (float)(area.Width * scaleX), (float)(area.Height * scaleY));

 // extract bitmap and prepare for editing
 Bitmap bitmap = imageShape.CreateBitmap();

 bitmap.SetResolution((float)imageShape.HorizontalResolution, (float)imageShape.VerticalResolution);

 // clear a part of the bitmap
 using (Graphics g = Graphics.FromImage(bitmap))
 {
 if (IsFlipped(imageShape, transform))
 {
 g.Transform = new Matrix(1, 0, 0, -1, 0, bitmap.Height);
 }

 g.FillRectangle(clearBrush, area);
 }

 // return a new image shape with the edited bitmap
 return new ImageShape(bitmap) { Transform = imageShape.Transform };
}

``` vb
    Private Function ClearImageArea(imageShape As ImageShape, area As RectangleF, clearBrush As System.Drawing.Brush, transform As Matrix) As ImageShape
        Dim shapeRect As TallComponents.PDF.Rectangle = GetImageShapeRectangle(imageShape, transform)
        Dim scaleX As Double = imageShape.Width / shapeRect.Width
        Dim scaleY As Double = imageShape.Height / shapeRect.Height

        area = New RectangleF(CSng(area.X * scaleX), CSng(area.Y * scaleY), CSng(area.Width * scaleX), CSng(area.Height * scaleY))

        ' extract bitmap and prepare for editing
        Dim bitmap As Bitmap = imageShape.CreateBitmap()

        bitmap.SetResolution(CSng(imageShape.HorizontalResolution), CSng(imageShape.VerticalResolution))

        ' clear a part of the bitmap
        Using g As Graphics = Graphics.FromImage(bitmap)
            If IsFlipped(imageShape, transform) Then
                g.Transform = New Matrix(1, 0, 0, -1, 0, bitmap.Height)
            End If

            g.FillRectangle(clearBrush, area)
        End Using

        ' return a new image shape with the edited bitmap
        Dim shape = New ImageShape(bitmap)
        shape.Transform = imageShape.Transform
        Return shape
    End Function
]]></code>
</codesnippet>

Few utility methods that are used in the code above.

``` csharp
private static TallComponents.PDF.Rectangle GetImageShapeRectangle(ImageShape imageShape, Matrix transform)
{
 Matrix shapeTransform = GetShapeTransform(imageShape, transform);

 // get the transformed shape rect
 PointF[] points = new[] { new PointF(0, 0),
 new PointF((float)(imageShape.Width), (float)(imageShape.Height)) };
 shapeTransform.TransformPoints(points);

 double width = points[1].X - points[0].X;
 double height = points[1].Y - points[0].Y;

 // flipped, so fix the rect
 if (height < 0)
 {
 PointF tmpPoint = points[0];

 points[0] = new PointF(points[0].X, points[1].Y);
 points[1] = new PointF(points[1].X, tmpPoint.Y);

 height = -height;
 }
 return new TallComponents.PDF.Rectangle(points[0].X, points[0].Y, width, height);
}

private static Matrix GetShapeTransform(ContentShape shape, Matrix transform)
{
 Matrix shapeTransform = transform.Clone();

 if (shape.Transform != null)
 {
 shapeTransform.Multiply(shape.Transform.CreateGdiMatrix());
 }
 return shapeTransform;
}

private static bool IsFlipped(ImageShape imageShape, Matrix transform)
{
 Matrix shapeTransform = GetShapeTransform(imageShape, transform);

 // get the transformed shape rect
 PointF[] points = new[] { new PointF(0, 0),
 new PointF((float)(imageShape.Width), (float)(imageShape.Height)) };
 shapeTransform.TransformPoints(points);

 return (points[1].Y - points[0].Y < 0);
}

static RectangleF IntersectRectangles(TallComponents.PDF.Rectangle rect1, TallComponents.PDF.Rectangle rect2)
{
 double rect2Right = rect2.Left + rect2.Width;
 double rect2Top = rect2.Bottom + rect2.Height;

 double rect1Right = rect1.Left + rect1.Width;
 double rect1Top = rect1.Bottom + rect1.Height;

 if ((rect2Right < rect1.Left || rect2.Left > rect1Right) ||
 (rect2.Bottom > rect1Top || rect2Top < rect1.Bottom))
 {
 return RectangleF.Empty;
 }

 double left = Math.Max(rect1.Left, rect2.Left);
 double bottom = Math.Max(rect1.Bottom, rect2.Bottom);

 double width = Math.Min(rect1Right, rect2Right) - left;
 double height = Math.Min(rect1Top, rect2Top) - bottom;

 float x = (float)((left - rect2.Left));
 float y = (float)(rect2.Height - (bottom + height - rect2.Bottom));

 RectangleF rect = new RectangleF(x, y, (float)width, (float)height);
 return rect;
}

CopyPrivate Function GetImageShapeRectangle(imageShape As ImageShape, transform As Matrix) As TallComponents.PDF.Rectangle
 Dim shapeTransform As Matrix = GetShapeTransform(imageShape, transform)

 ' get the transformed shape rect
 Dim points As PointF() = {New PointF(0, 0), New PointF(CSng(imageShape.Width), CSng(imageShape.Height))}
 shapeTransform.TransformPoints(points)

 Dim width As Double = points(1).X - points(0).X
 Dim height As Double = points(1).Y - points(0).Y

 ' flipped, so fix the rect
 If height < 0 Then
 Dim tmpPoint As PointF = points(0)

 points(0) = New PointF(points(0).X, points(1).Y)
 points(1) = New PointF(points(1).X, tmpPoint.Y)

 height = -height
 End If
 Return New TallComponents.PDF.Rectangle(points(0).X, points(0).Y, width, height)
 End Function

 Private Function GetShapeTransform(shape As ContentShape, transform As Matrix) As Matrix
 Dim shapeTransform As Matrix = transform.Clone()

 If shape.Transform IsNot Nothing Then
 shapeTransform.Multiply(shape.Transform.CreateGdiMatrix())
 End If
 Return shapeTransform
 End Function

 Private Function IsFlipped(imageShape As ImageShape, transform As Matrix) As Boolean
 Dim shapeTransform As Matrix = GetShapeTransform(imageShape, transform)

 ' get the transformed shape rect
 Dim points As PointF() = {New PointF(0, 0), New PointF(CSng(imageShape.Width), CSng(imageShape.Height))}
 shapeTransform.TransformPoints(points)

 Return (points(1).Y - points(0).Y < 0)
 End Function

 Private Function IntersectRectangles(rect1 As TallComponents.PDF.Rectangle, rect2 As TallComponents.PDF.Rectangle) As RectangleF
 Dim rect2Right As Double = rect2.Left + rect2.Width
 Dim rect2Top As Double = rect2.Bottom + rect2.Height

 Dim rect1Right As Double = rect1.Left + rect1.Width
 Dim rect1Top As Double = rect1.Bottom + rect1.Height

 If (rect2Right < rect1.Left OrElse rect2.Left > rect1Right) OrElse (rect2.Bottom > rect1Top OrElse rect2Top < rect1.Bottom) Then
 Return RectangleF.Empty
 End If

 Dim left As Double = Math.Max(rect1.Left, rect2.Left)
 Dim bottom As Double = Math.Max(rect1.Bottom, rect2.Bottom)

 Dim width As Double = Math.Min(rect1Right, rect2Right) - left
 Dim height As Double = Math.Min(rect1Top, rect2Top) - bottom

 Dim x As Single = CSng((left - rect2.Left))
 Dim y As Single = CSng(rect2.Height - (bottom + height - rect2.Bottom))

 Dim rect As New RectangleF(x, y, CSng(width), CSng(height))
 Return rect
 End FunctionPrivate Function GetImageShapeRectangle(imageShape As ImageShape, transform As Matrix) As TallComponents.PDF.Rectangle
 Dim shapeTransform As Matrix = GetShapeTransform(imageShape, transform)

 ' get the transformed shape rect
 Dim points As PointF() = {New PointF(0, 0), New PointF(CSng(imageShape.Width), CSng(imageShape.Height))}
 shapeTransform.TransformPoints(points)

 Dim width As Double = points(1).X - points(0).X
 Dim height As Double = points(1).Y - points(0).Y

 ' flipped, so fix the rect
 If height < 0 Then
 Dim tmpPoint As PointF = points(0)

 points(0) = New PointF(points(0).X, points(1).Y)
 points(1) = New PointF(points(1).X, tmpPoint.Y)

 height = -height
 End If
 Return New TallComponents.PDF.Rectangle(points(0).X, points(0).Y, width, height)
 End Function

 Private Function GetShapeTransform(shape As ContentShape, transform As Matrix) As Matrix
 Dim shapeTransform As Matrix = transform.Clone()

 If shape.Transform IsNot Nothing Then
 shapeTransform.Multiply(shape.Transform.CreateGdiMatrix())
 End If
 Return shapeTransform
 End Function

 Private Function IsFlipped(imageShape As ImageShape, transform As Matrix) As Boolean
 Dim shapeTransform As Matrix = GetShapeTransform(imageShape, transform)

 ' get the transformed shape rect
 Dim points As PointF() = {New PointF(0, 0), New PointF(CSng(imageShape.Width), CSng(imageShape.Height))}
 shapeTransform.TransformPoints(points)

 Return (points(1).Y - points(0).Y < 0)
 End Function

 Private Function IntersectRectangles(rect1 As TallComponents.PDF.Rectangle, rect2 As TallComponents.PDF.Rectangle) As RectangleF
 Dim rect2Right As Double = rect2.Left + rect2.Width
 Dim rect2Top As Double = rect2.Bottom + rect2.Height

 Dim rect1Right As Double = rect1.Left + rect1.Width
 Dim rect1Top As Double = rect1.Bottom + rect1.Height

 If (rect2Right < rect1.Left OrElse rect2.Left > rect1Right) OrElse (rect2.Bottom > rect1Top OrElse rect2Top < rect1.Bottom) Then
 Return RectangleF.Empty
 End If

 Dim left As Double = Math.Max(rect1.Left, rect2.Left)
 Dim bottom As Double = Math.Max(rect1.Bottom, rect2.Bottom)

 Dim width As Double = Math.Min(rect1Right, rect2Right) - left
 Dim height As Double = Math.Min(rect1Top, rect2Top) - bottom

 Dim x As Single = CSng((left - rect2.Left))
 Dim y As Single = CSng(rect2.Height - (bottom + height - rect2.Bottom))

 Dim rect As New RectangleF(x, y, CSng(width), CSng(height))
 Return rect
 End Function

The original page:

The edited page. The red cross lines appear when we use the trial version of PDFKit.

Download PDFKit.NET 4.0

							We will send you a download link
						

	

	

	Your name*

	Your e-mail*

	Newsletter	Subscribe to newsletter

	

	

	

	

	Name
This field is for validation purposes and should be left unchanged.

Download

							Why do we ask your email address?
						
We send tips that speed up your evaluation
We let you know about bug fixes
You can always unsubscribe with one click
We never share your address with a 3rd party

							Thank you for your download

We have sent an email with a download link.

Our products
PDFKit.NET 5.0
Create and manipulate PDF documents
TallPDF.NET 5.0
Generate PDF on the fly
PDFRasterizer.NET 4.0
Render PDF pages cross-platform

Support resources
	Code samples
	Submit issue
	Contact
	Licensing Model

Legal
	EULA
	Privacy

LinkedIn

Twitter

				© 2001-2024 TallComponents BV. All rights reserved.
							

